跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) LLM(84) angular(83) 大语言模型(67) 人工智能(56) 前端开发(50) LangChain(43) golang(43) 机器学习(40) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) 深度学习(20) Web技术(19) 精选资源(19) Java(19) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) LLMOps(11) 聊天机器人(11) 安卓(11) ChatGPT(10) typescript(10) 资料精选(10) mlops(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) RAG(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) 安全(9) 智能体(8) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 数据科学(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) whisper(6) Prisma(6) 隐私保护(6) 提示工程(6) Agent(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 生成式AI(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) 数据分析(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) LLM Agent(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) Machine Learning(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

微软的桌面人工智能开发环境提供了早期预览,可以让您构建在PC和移动设备上运行的小型语言模型。

微软利用其Ignite 2023活动中以开发者为中心的部分介绍了一系列人工智能开发工具。Azure AI Studio使用Azure OpenAI模型或其他模型支持云托管应用程序的大规模人工智能开发,而Copilot Studio则通过OpenAI支持的“增强”扩展了旧的Power Virtual Agents低代码人工智能工具

微软还宣布了第三个工具,但它花了一段时间才出现在开发者的电脑上。该工具是Windows AI Studio,现在可以预览。让我们来看看。

Windows AI Studio简介

Windows AI Studio旨在将微软及其合作伙伴的人工智能模型库引入PC,现在使用GPU,但最终也使用板载人工智能加速器,如微软最新Surface硬件中的Arm和Intel NPU。这些NPU最初是在我撰写本专栏的Surface Laptop Studio 2中交付的。随着DirectML对这些和其他设备中集成的Intel NPU的支持将于2024年初到期,这一选项应该对开发人员和其他用户具有吸引力。

Windows AI Studio旨在帮助您训练和自定义模型,为代码中的使用做好准备。经过培训后,您可以使用ONNX(开放神经网络交换)跨平台运行时转换模型以在桌面和移动应用程序中使用。作为Visual Studio代码扩展提供的Windows AI Studio将允许您将许多不同的工具和AI模型放在一个地方,与其他工具一起工作,这样您就可以在构建模型的同时完善模型。NET应用程序。


Windows AI Studio提供了一个有趣的Windows和Linux工具的混合体,可以在CPU和GPU上工作,使用Windows Linux子系统(WSL)来托管和运行模型。这种方法确实需要功能强大的硬件、充足的内存和最近的GPU。如果没有离散GPU,您将无法使用Windows AI Studio,该GPU可以是工作站级卡,也可以是通过Thunderbolt连接工作的外部GPU。

Windows AI Studio安装和先决条件

Windows AI Studio安装起来非常简单。您可以从Visual Studio市场下载它,在那里您还可以找到快速入门说明。请注意,默认情况下,Visual Studio Code中的Visual Studio Marketplace视图设置为安装发布版本,因此您可能需要将视图切换到预发布版本。一旦你做出了改变,下载就变得简单快捷。

有一些重要的先决条件。你需要一个Nvidia GPU和WSL,至少运行Ubuntu 18.4版本作为默认Linux。安装Windows AI Studio后,将检查WSL环境中是否支持Conda和CUDA,以便使用GPU。如果没有安装,Windows AI Studio提供了一个一键选项,以确保所有必备库都到位。

这使用Visual Studio Code的远程服务器选项来加载和运行安装脚本。如果要查看它的运行情况,请打开Visual Studio Code的内置终端并切换到其“输出”视图。安装可能需要一段时间,因为它将下载并安装相关的库。预计它至少需要五分钟,如果你有一台旧电脑,则需要更长的时间。Windows AI Studio文档目前仅在GitHub上;Microsoft Learn仅显示占位符页面。

您在Windows AI Studio中的第一个模型

安装后,Windows AI Studio会在Visual Studio代码扩展侧边栏中添加一个新的类似芯片的图标。点击此按钮可启动Windows AI Studio开发环境。在启动时,它将检查您的开发环境是否仍然满足必要的先决条件。一旦检查通过,并且对WSL配置进行了任何更新,扩展就会加载一个What's New页面,并用其当前的一组功能填充其操作窗格。在最新的预览版中,可以看到四种不同的操作,并且计划进行更多操作。然而,目前只有一个有效,即模型微调动作。

其他计划中的选项包括检索增强一代(RAG),这是一个与微软Phi-2基础模型合作的游乐场,以及访问Hugging Face等服务的现成模型库。使用Phi-2将允许您构建和训练自己的小型语言模型,而无需依赖Azure OpenAI等云托管服务。

RAG支持将允许您采用现有的大型语言模型,并将其用作您自己的自定义LLM的基础,而无需在您自己的数据上对其进行完全再培训。RAG使用即时工程技术为LLM提供更全面的背景,以得出更准确的答案。使用RAG,您可以将更多特定于领域或最新的数据推送到LLM中,作为提示的一部分,使用外部数据源,包括您自己的特定业务信息。

将RAG工具添加到Windows AI Studio中应该可以帮助您构建和测试数据的矢量索引和嵌入。一旦你有了这些,你就可以开始开发搜索驱动的管道,这些管道将使你的LLM应用程序成为基础,并使用TypeChat、Prompt Flow和Semantic Kernel等工具将它们的响应限制在你自己的域中。

用QLoRA量化模型

然而,目前,这一早期预览版专注于微调现有的人工智能模型,准备转换为ONNX并嵌入WinML项目。单独使用此功能是值得的,因为它是任何自定义机器学习产品的关键要求,您希望您的模型在本地硬件上运行,而不是在云中运行。

要设置模型调整环境,首先选择一个本地文件夹,然后选择一个模型。最初的选择很小,有五种开源文本生成模型可从微软、拥抱脸、Mistral AI和Meta获得。在这里,微软正在使用QLoRA调整方法:量化低级别适配器,这是华盛顿大学开发的一种方法,已经显示出令人印象深刻的结果。最初的论文描述了一个模型系列,它在单个GPU上只需24小时的调优,就可以提供ChatGPT 99.3%的性能。

如果我们要把生成人工智能带到我们的计算机和手持设备上,这就是我们需要的方法。我们不需要大型语言模型的复杂性(或大小);相反,我们需要在一个小的语言模型中对自己的数据执行相同的性能。QLoRA和类似技术是在开源基础模型之上构建这些定制AI的一种方式。

选择模型后,单击“配置项目”开始在Windows和WSL中设置项目。在使用模型之前,您可能需要输入“拥抱脸”的访问令牌或注册访问。Windows AI Studio为您提供了一组调整参数,您将使用这些参数来优化模型的性能。对于初始测试,只需接受默认值并等待模型生成即可。还可以选择使用其他数据集来改进调优。

使用Olive微调模型

生成模型后,系统会提示您在Windows AI Studio工作区中重新启动Visual Studio代码窗口。这会将您从Windows切换到WSL,随时可以使用安装过程中安装的工具。作为工作区初始设置的一部分,Windows AI Studio将安装Prompt Flow扩展。

打开模型工作区后,可以使用Visual Studio代码终端启动用于调整模型的Conda环境。现在,您可以在默认内容或自己的数据集上使用QLoRA来运行Olive。这可能需要一些时间,所以要做好等待的准备。即使在相对高端的显卡上,调整也需要几个小时。

当调整过程完成后,您可以使用一个简单的Gradio web界面来测试您的训练模型,然后再将其打包并在应用程序中使用。这是一个有趣的小工具,值得在调优前后运行,这样您就可以看到流程如何影响交互。

重要的是要记住,这是一个非常早期发布的复杂工具。微软在简化人工智能模型和调优工具方面做了很多工作,但你仍然需要知道你想要从你正在构建的语言模型中得到什么。作为车削过程的一部分,你可以调整很多变量,了解每个变量控制的是什么,以及它们如何影响最终的模型是值得的。

目前,Windows AI Studio很可能是人工智能专家的一个工具。然而,它显示了很多希望。随着它的发展,并添加了更多功能,它很容易成为Windows开发工作流程的重要组成部分——尤其是如果人工智能加速器成为下一代PC的常见组件。