category
使用postgres作为后端并利用pgvector扩展的LangChain向量库抽象的实现。
The code lives in an integration package called: langchain_postgres.
您可以运行以下命令来启动具有pgvector扩展名的postgres容器:
docker run --name pgvector-container -e POSTGRES_USER=langchain -e POSTGRES_PASSWORD=langchain -e POSTGRES_DB=langchain -p 6024:5432 -d pgvector/pgvector:pg16
Status
这段代码已经从langchain_community移植到一个名为langchain-postgres的专用包中。已进行以下更改:
- langchain_postgres仅适用于psycopg3。请从postgresql+psycopg2://...更新您的连接字符串。。。到
postgresql+psycopg://langchain:langchain@...
(是的,它的驱动程序名称是psycopg而不是psycopg3,但它将使用psycopg3。 - 嵌入存储和集合的架构已经更改,以使add_documents能够正确使用用户指定的id。
- 现在必须传递一个显式连接对象。
目前,还没有任何机制支持在模式更改时轻松地进行数据迁移。因此,vectorstore中的任何模式更改都需要用户重新创建表并重新添加文档。如果这是一个问题,请使用其他向量库。如果没有,这个实现应该适合您的用例。
Install dependencies
Here, we’re using langchain_cohere
for embeddings, but you can use other embeddings providers.
!pip install --quiet -U langchain_cohere
!pip install --quiet -U langchain_postgres
Initialize the vectorstore
from langchain_cohere import CohereEmbeddings
from langchain_core.documents import Document
from langchain_postgres import PGVector
from langchain_postgres.vectorstores import PGVector
# See docker command above to launch a postgres instance with pgvector enabled.
connection = "postgresql+psycopg://langchain:langchain@localhost:6024/langchain" # Uses psycopg3!
collection_name = "my_docs"
embeddings = CohereEmbeddings()
vectorstore = PGVector(
embeddings=embeddings,
collection_name=collection_name,
connection=connection,
use_jsonb=True,
)
Drop tables
If you need to drop tables (e.g., updating the embedding to a different dimension or just updating the embedding provider):
vectorstore.drop_tables()
Add documents
Add documents to the vectorstore
docs = [
Document(
page_content="there are cats in the pond",
metadata={"id": 1, "location": "pond", "topic": "animals"},
),
Document(
page_content="ducks are also found in the pond",
metadata={"id": 2, "location": "pond", "topic": "animals"},
),
Document(
page_content="fresh apples are available at the market",
metadata={"id": 3, "location": "market", "topic": "food"},
),
Document(
page_content="the market also sells fresh oranges",
metadata={"id": 4, "location": "market", "topic": "food"},
),
Document(
page_content="the new art exhibit is fascinating",
metadata={"id": 5, "location": "museum", "topic": "art"},
),
Document(
page_content="a sculpture exhibit is also at the museum",
metadata={"id": 6, "location": "museum", "topic": "art"},
),
Document(
page_content="a new coffee shop opened on Main Street",
metadata={"id": 7, "location": "Main Street", "topic": "food"},
),
Document(
page_content="the book club meets at the library",
metadata={"id": 8, "location": "library", "topic": "reading"},
),
Document(
page_content="the library hosts a weekly story time for kids",
metadata={"id": 9, "location": "library", "topic": "reading"},
),
Document(
page_content="a cooking class for beginners is offered at the community center",
metadata={"id": 10, "location": "community center", "topic": "classes"},
),
]
vectorstore.add_documents(docs, ids=[doc.metadata["id"] for doc in docs])
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
vectorstore.similarity_search("kitty", k=10)
[Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}),
Document(page_content='the book club meets at the library', metadata={'id': 8, 'topic': 'reading', 'location': 'library'}),
Document(page_content='the library hosts a weekly story time for kids', metadata={'id': 9, 'topic': 'reading', 'location': 'library'}),
Document(page_content='the new art exhibit is fascinating', metadata={'id': 5, 'topic': 'art', 'location': 'museum'}),
Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}),
Document(page_content='the market also sells fresh oranges', metadata={'id': 4, 'topic': 'food', 'location': 'market'}),
Document(page_content='a cooking class for beginners is offered at the community center', metadata={'id': 10, 'topic': 'classes', 'location': 'community center'}),
Document(page_content='fresh apples are available at the market', metadata={'id': 3, 'topic': 'food', 'location': 'market'}),
Document(page_content='a sculpture exhibit is also at the museum', metadata={'id': 6, 'topic': 'art', 'location': 'museum'}),
Document(page_content='a new coffee shop opened on Main Street', metadata={'id': 7, 'topic': 'food', 'location': 'Main Street'})]
Adding documents by ID will over-write any existing documents that match that ID.
docs = [
Document(
page_content="there are cats in the pond",
metadata={"id": 1, "location": "pond", "topic": "animals"},
),
Document(
page_content="ducks are also found in the pond",
metadata={"id": 2, "location": "pond", "topic": "animals"},
),
Document(
page_content="fresh apples are available at the market",
metadata={"id": 3, "location": "market", "topic": "food"},
),
Document(
page_content="the market also sells fresh oranges",
metadata={"id": 4, "location": "market", "topic": "food"},
),
Document(
page_content="the new art exhibit is fascinating",
metadata={"id": 5, "location": "museum", "topic": "art"},
),
Document(
page_content="a sculpture exhibit is also at the museum",
metadata={"id": 6, "location": "museum", "topic": "art"},
),
Document(
page_content="a new coffee shop opened on Main Street",
metadata={"id": 7, "location": "Main Street", "topic": "food"},
),
Document(
page_content="the book club meets at the library",
metadata={"id": 8, "location": "library", "topic": "reading"},
),
Document(
page_content="the library hosts a weekly story time for kids",
metadata={"id": 9, "location": "library", "topic": "reading"},
),
Document(
page_content="a cooking class for beginners is offered at the community center",
metadata={"id": 10, "location": "community center", "topic": "classes"},
),
]
Filtering Support
The vectorstore supports a set of filters that can be applied against the metadata fields of the documents.
Operator | Meaning/Category |
---|---|
\$eq | Equality (==) |
\$ne | Inequality (!=) |
\$lt | Less than (\<) |
\$lte | Less than or equal (\<=) |
\$gt | Greater than (>) |
\$gte | Greater than or equal (>=) |
\$in | Special Cased (in) |
\$nin | Special Cased (not in) |
\$between | Special Cased (between) |
\$like | Text (like) |
\$ilike | Text (case-insensitive like) |
\$and | Logical (and) |
\$or | Logical (or) |
vectorstore.similarity_search("kitty", k=10, filter={"id": {"$in": [1, 5, 2, 9]}})
[Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'}),
Document(page_content='the library hosts a weekly story time for kids', metadata={'id': 9, 'topic': 'reading', 'location': 'library'}),
Document(page_content='the new art exhibit is fascinating', metadata={'id': 5, 'topic': 'art', 'location': 'museum'}),
Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'})]
If you provide a dict with multiple fields, but no operators, the top level will be interpreted as a logical AND filter
vectorstore.similarity_search(
"ducks",
k=10,
filter={"id": {"$in": [1, 5, 2, 9]}, "location": {"$in": ["pond", "market"]}},
)
[Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}),
Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'})]
vectorstore.similarity_search(
"ducks",
k=10,
filter={
"$and": [
{"id": {"$in": [1, 5, 2, 9]}},
{"location": {"$in": ["pond", "market"]}},
]
},
)
[Document(page_content='ducks are also found in the pond', metadata={'id': 2, 'topic': 'animals', 'location': 'pond'}),
Document(page_content='there are cats in the pond', metadata={'id': 1, 'topic': 'animals', 'location': 'pond'})]
vectorstore.similarity_search("bird", k=10, filter={"location": {"$ne": "pond"}})
[Document(page_content='the book club meets at the library', metadata={'id': 8, 'topic': 'reading', 'location': 'library'}),
Document(page_content='the new art exhibit is fascinating', metadata={'id': 5, 'topic': 'art', 'location': 'museum'}),
Document(page_content='the library hosts a weekly story time for kids', metadata={'id': 9, 'topic': 'reading', 'location': 'library'}),
Document(page_content='a sculpture exhibit is also at the museum', metadata={'id': 6, 'topic': 'art', 'location': 'museum'}),
Document(page_content='the market also sells fresh oranges', metadata={'id': 4, 'topic': 'food', 'location': 'market'}),
Document(page_content='a cooking class for beginners is offered at the community center', metadata={'id': 10, 'topic': 'classes', 'location': 'community center'}),
Document(page_content='a new coffee shop opened on Main Street', metadata={'id': 7, 'topic': 'food', 'location': 'Main Street'}),
Document(page_content='fresh apples are available at the market', metadata={'id': 3, 'topic': 'food', 'location': 'market'})]
Help us out by providing feedback on this documentation page:
- 登录 发表评论