跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(75) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) ChatGPT(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) RAG(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) 智能体(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) kafka(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 大型语言模型(2) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

LLM代理的客观比较

今天有相当多的LLM代理可用。一些最突出的是AutoGPT、AutoGen、BabyAGI和OpenAgents。本文旨在提供这些模型的并排比较,以及我们应该和不应该在哪些用例中使用它们。

AutoGen


AutoGen是一个框架,可以使用多个代理来开发LLM应用程序,这些代理可以相互对话以解决任务。AutoGen代理是可定制的、可交谈的,并无缝地允许人类参与。它们可以在各种模式下运行,这些模式采用LLM、人工输入和工具的组合。通过能够创建可定制和可交谈的代理,AutoGen允许人类在这些多代理对话中无缝参与。

什么是LLMOp?

LLMOps代表“大型语言模型操作”,指的是在人工智能模型的整个生命周期中加快人工智能模型开发、部署和管理的专业实践和工作流程。

LLMOps平台可以提供更高效的库管理,降低运营成本,并使更少的技术人员能够完成任务。这些操作包括数据预处理、语言模型训练、监控、微调和部署。与机器学习操作(MLOps)一样,LLMOps建立在数据科学家、DevOps工程师和IT专业人员的合作基础上。

LLM,如使用GPT-4的OpenAI的ChatGPT和谷歌的BERT,代表了一类新的、更先进的
自然语言处理(NLP)模型可以快速回答自然语言问题、提供摘要并遵循复杂指令。

LLMOps平台将数据科学和软件工程带入一个协作环境,用于数据探索、实时实验跟踪、即时工程以及模型和管道管理。LLMOps自动化了机器学习生命周期中的操作和监控任务。

 

LLMOps与MLOps


由于LLMOp属于机器学习操作的范围,它可能会被忽视,甚至被称为“LLM的MLOps”,但LLMOp应该单独考虑,因为它特别专注于简化LLM开发。以下是机器学习(ML)工作流和需求随LLM而具体变化的两种方式。

MetaGPT概念

概念
完成本教程后,您将能够:

  • 理解MetaGPT的代理和环境概念
  • 代理如何相互交互以及多代理协作可能是什么样子


其目的是提供对概念的直观和简化的解释,以便用户有进一步探索教程系列的背景。在我们力求清晰的同时,我们也认识到简化可能会产生不准确或遗漏。因此,我们鼓励更多地浏览后续文档,以获得完整的理解。
如果您想先动手编写代码,也可以跳到Agent101
如果您想要更严格的解释,请查看我们的论文


代理


学术界和工业界对“代理人”一词提出了各种定义。粗略地说,一个代理人应该能够像人类一样思考或计划,拥有记忆甚至情感,具备与环境、其他代理人和人类互动的特定技能。在综合考察中,代理人本身就是一个复杂的系统。
在我们看来,我们将代理人想象成一个环境中的数字有机体,其中

QLoRA——如何在单个GPU上微调LLM

Python示例代码介绍(ft.Mistral-7b)

本文是关于在实践中使用大型语言模型(LLM)的更大系列文章的一部分。在上一篇文章中,我们看到了如何使用OpenAI对LLM进行微调。然而,这种方法的主要限制是,OpenAI的模型隐藏在其API后面,这限制了我们可以使用它们构建什么以及如何构建。在这里,我将讨论一种使用开源模型和QLoRA来微调LLM的替代方法。

微调是指我们采用现有的模型,并根据特定的用例对其进行调整。这是最近人工智能创新爆发的关键部分,催生了ChatGPT等。

尽管微调是一个简单(强大)的想法,但将其应用于LLM并不总是那么简单。关键的挑战是LLM在计算上(非常)昂贵(即它们不能在典型的笔记本电脑上进行训练)。

例如,70B参数模型的标准微调需要超过1TB的内存[1]。就上下文而言,A100 GPU具有高达80GB的内存,所以你(最多)需要十几张这样的20000美元的卡!

虽然这可能会让你构建自定义人工智能的梦想破灭,但现在还不要放弃。开源社区一直在努力使使用这些模型的建筑更容易访问。从这些努力中产生的一种流行方法是QLoRA(量化低秩自适应),这是一种在不牺牲性能的情况下微调模型的有效方法。