跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(80) 大语言模型(64) 人工智能(54) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) RAG(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【LLM评估】LLM 评估指标:终极 LLM 评估指南

尽管对于任何希望交付强大的 LLM 应用程序的人来说,评估大型语言模型 (LLM) 的输出都是必不可少的,但 LLM 评估对许多人来说仍然是一项艰巨的任务。无论您是通过微调来提高模型的准确性,还是增强检索增强生成 (RAG) 系统的上下文相关性,了解如何为您的用例开发和决定适当的 LLM 评估指标集对于构建坚不可摧的 LLM 评估管道都是必不可少的。

本文将教您有关 LLM 评估指标的所有知识,并附上代码示例。我们将深入探讨:

  • 什么是 LLM 评估指标,如何使用它们来评估 LLM 系统,常见的陷阱,以及是什么让优秀的 LLM 评估指标变得优秀。
  • 对 LLM 评估指标进行评分的所有不同方法,以及为什么 LLM-as-a-judge 最适合 LLM 评估。
  • 如何使用 DeepEval (⭐https://github.com/confident-ai/deepeval) 实现并决定在代码中使用的适当的 LLM 评估指标集。
    您准备好阅读这份长长的清单了吗?让我们开始吧。

(更新:如果您正在寻找评估 LLM 聊天机器人/对话的指标,请查看这篇新文章!)

【LLM架构】用于评估LLM生成内容的指标列表

评估方法衡量我们的系统性能如何。对每个摘要进行人工评估(人工审查)既费时又昂贵,而且不可扩展,因此通常会辅以自动评估。许多自动评估方法试图衡量人类评估者会考虑的文本质量。这些品质包括流畅性、连贯性、相关性、事实一致性和公平性。内容或风格与参考文本的相似性也可能是生成文本的重要质量。

下图包括用于评估LLM生成内容的许多指标,以及如何对其进行分类。

LLM护栏项目

https://github.com/NVIDIA/NeMo-Guardrails

NeMo Guardrails是一个开源工具包,用于轻松地将可编程护栏添加到基于LLM的会话系统中。

https://github.com/guardrails-ai/guardrails

为大型语言模型添加护栏。

https://github.com/truera/trulens

Evaluation and Tracking for LLM Experiments

 

 

 

 

评估大型语言模型(LLM):准确评估的标准度量集

Large Language Models (LLMs) are a type of artificial intelligence model that can generate human-like text. They are trained on large amounts of text data and can be used for a variety of natural language processing tasks, such as language translation, question answering, and text generation.

Evaluating LLMs is important to ensure that they are performing well and generating high-quality text. This is especially important for applications where the generated text is used to make decisions or provide information to users.

如何评估LLM:一个完整的度量框架

Over the past year, excitement around Large Language Models (LLMs) skyrocketed. With ChatGPT and BingChat, we saw LLMs approach human-level performance in everything from performance on standardized exams to generative art. However, many of these LLM-based features are new and have a lot of unknowns, hence require careful release to preserve privacy and social responsibility. While offline evaluation is suitable for early development of features, it cannot assess how model changes benefit or degrade the user experience in production.

LLM评估指标:LLM评估所需的一切

Although evaluating the outputs of Large Language Models (LLMs) is essential for anyone looking to ship robust LLM applications, LLM evaluation remains a challenging task for many. Whether you are refining a model’s accuracy through fine-tuning or enhancing a Retrieval-Augmented Generation (RAG) system’s contextual relevancy, understanding how to develop and decide on the appropriate set of LLM evaluation metrics for your use case is imperative to building a bulletproof LLM evaluation pipeline.