跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(83) LLM(80) 大语言模型(64) 人工智能(54) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) RAG(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

Ray正在人工智能工程领域崭露头角,对扩展LLM和RL至关重要

Spark在数据工程中几乎是必不可少的。Ray正在人工智能工程领域崭露头角。

雷是伦敦大学学院Spark的继任者。Spark和Ray有很多相似之处,例如用于计算的统一引擎。但Spark主要专注于大规模数据分析,而Ray则是为机器学习应用程序设计的。

在这里,我将介绍Ray,并介绍如何使用Ray扩展大型语言模型(LLM)和强化学习(RL),然后总结Ray的怀旧和趋势。

Ray简介

Ray是一个开源的统一计算框架,可以轻松扩展人工智能和Python的工作负载,从强化学习到深度学习,再到模型调整和服务。

下面是Ray的最新架构。它主要有三个组件:Ray Core、Ray AI Runtime和Storage and Tracking。

Ray

Ray 2.x and Ray AI Runtime (AIR) (Source: January 2023 Ray Meetup)

Ray Core为构建和扩展分布式应用程序提供了少量核心原语(即任务、参与者、对象)。

Ray AI Runtime(AIR)是一个可扩展的统一ML应用工具包。AIR能够简单地扩展单个工作负载、端到端工作流和流行的生态系统框架,所有这些都只需使用Python。

AIR建立在Ray一流的预处理、培训、调整、评分、服务和强化学习库的基础上,将集成生态系统整合在一起。

Ray实现了工作负载从笔记本电脑到大型集群的无缝扩展。Ray集群由单个头节点和任意数量的连接辅助节点组成。工作节点的数量可以根据Ray集群配置指定的应用程序需求进行自动缩放。头节点运行自动缩放器。

我们可以提交作业以在Ray集群上执行,也可以通过连接到头部节点并运行Ray.init来交互使用集群。

启动并运行Ray很简单。下面将说明如何安装它。

安装Ray

$ pip install ray
████████████████████████████████████████ 100%
Successfully installed ray
$ python
>>>import ray; ray.init()
 ... INFO worker.py:1509 -- Started a local Ray instance. View the dashboard at 127.0.0.1:8265 ...

Install Ray libraries

pip install -U "ray[air]" # installs Ray + dependencies for Ray AI Runtime
pip install -U "ray[tune]"  # installs Ray + dependencies for Ray Tune
pip install -U "ray[rllib]"  # installs Ray + dependencies for Ray RLlib
pip install -U "ray[serve]"  # installs Ray + dependencies for Ray Serve

此外,Ray可以在Kubernetes和云虚拟机上大规模运行。

使用Ray缩放LLM和RL

ChatGPT是一个重要的人工智能里程碑,具有快速增长和前所未有的影响力。它建立在OpenAI的GPT-3大型语言模型家族(LLM)的基础上,采用了Ray。

OpenAI首席技术官兼联合创始人Greg Brockman表示,在OpenAI,我们正在解决世界上一些最复杂、最苛刻的计算问题。Ray为这些最棘手的问题提供了解决方案,并使我们能够比以前更快地大规模迭代。

在SageMaker培训平台的240 ml.p4d.24个大型实例上训练GPT-3大约需要25天。挑战不仅在于处理,还在于记忆。Wu Tao 2.0似乎只需要1000多个GPU来存储其参数。

训练ChatGPT,包括像GPT-3这样的大型语言模型,需要大量的计算资源,估计要花费数千万美元。通过授权ChatGPT,我们可以看到Ray的可扩展性。

Ray试图解决具有挑战性的ML问题。它从一开始就支持培训和服务强化学习模式。

让我们用Python编写代码,看看如何训练大规模的强化学习模型,并使用Ray serve为其提供服务。

步骤1:安装强化学习策略模型的依赖项。

!pip install -qU "ray[rllib,serve]" gym

第二步:定义大规模强化学习策略模型的培训、服务、评估和查询。

import gym
import numpy as np
import requests

# import Ray-related libs
from ray.air.checkpoint import Checkpoint
from ray.air.config import RunConfig
from ray.train.rl.rl_trainer import RLTrainer
from ray.air.config import ScalingConfig
from ray.train.rl.rl_predictor import RLPredictor
from ray.air.result import Result
from ray.serve import PredictorDeployment
from ray import serve
from ray.tune.tuner import Tuner


# train API for RL by specifying num_workers and use_gpu
def train_rl_ppo_online(num_workers: int, use_gpu: bool = False) -> Result:
    print("Starting online training")
    trainer = RLTrainer(
        run_config=RunConfig(stop={"training_iteration": 5}),
        scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
        algorithm="PPO",
        config={
            "env": "CartPole-v1",
            "framework": "tf",
        },
    )

    tuner = Tuner(
        trainer,
        _tuner_kwargs={"checkpoint_at_end": True},
    )
    result = tuner.fit()[0]
    return result

# serve RL model
def serve_rl_model(checkpoint: Checkpoint, name="RLModel") -> str:
    """ Serve an RL model and return deployment URI.

    This function will start Ray Serve and deploy a model wrapper
    that loads the RL checkpoint into an RLPredictor.
    """
    serve.run(
        PredictorDeployment.options(name=name).bind(
            RLPredictor, checkpoint
        )
    )
    return f"http://localhost:8000/"

# evaluate RL policy
def evaluate_served_policy(endpoint_uri: str, num_episodes: int = 3) -> list:
    """ Evaluate a served RL policy on a local environment.

    This function will create an RL environment and step through it.
    To obtain the actions, it will query the deployed RL model.
    """
    env = gym.make("CartPole-v1")

    rewards = []
    for i in range(num_episodes):
        obs = env.reset()
        reward = 0.0
        done = False
        while not done:
            action = query_action(endpoint_uri, obs)
            obs, r, done, _ = env.step(action)
            reward += r
        rewards.append(reward)

    return rewards

# query API on the RL endpoint
def query_action(endpoint_uri: str, obs: np.ndarray):
    """ Perform inference on a served RL model.

    This will send an HTTP request to the Ray Serve endpoint of the served
    RL policy model and return the result.
    """
    action_dict = requests.post(endpoint_uri, json={"array": obs.tolist()}).json()
    return action_dict

步骤3:现在训练模型,使用Ray serve为其服务,评估服务的模型,最后关闭Ray serve。

# training in 20 workers using GPU
result = train_rl_ppo_online(num_workers=20, use_gpu=True)

# serving
endpoint_uri = serve_rl_model(result.checkpoint)

# evaluating
rewards = evaluate_served_policy(endpoint_uri=endpoint_uri)

# shutdown
serve.shutdown()

Ray怀旧与潮流

Ray是作为UCB RISELab的一个研究项目启动的。RISELab是Spark诞生地AMPLab的继任者。

Ion Stoica教授是Spark和Ray的灵魂。他开始以Spark和Anyscale为核心产品创建Databricks。

我有幸在RISELab的早期阶段与研究员合作,见证了Ray的诞生。

MLOps

Ray's project post at the conference 2017 (Photo courtesy by author)

以上是雷在2017年的项目帖子。我们可以看到,它非常简单,但对于人工智能应用程序来说功能强大。

雷是一艘恒星飞船,正在增殖。它是增长最快的开源之一,正如下面Github的星级数量所示。

Ray

Ray正在人工智能工程领域崭露头角,是扩展LLM和RL的重要工具。Ray为未来巨大的人工智能机会做好了准备。