apaas.dev
1 October 2022
SEO Title
- ANOVA : Analysis of Variance
- AUC : Area Under the Curve
also known as AUROC: Area Under Receiver Operating Characteristic - CV: Cross Validation
- CNN : Convolutional Neural Network
- DNN: Deep Neural Network or Deconvolutional Neural Network
- EDA: Exploratory Data Analysis
- GBM: Gradient Boosting Machine
- GLM: Generalized Linear Model
- GRU: Gated Recurrent Unit
- HMM : Hidden Marcov Model
- ICA: Independent Component Analysis
- kNN: k-Nearest Neighbors
- LB: LeaderBoard
- LDA: Latent Dirichlet Allocation or Linear Discriminant Analysis
- LLE : Locally Linear Embedding
- LOOCV : Leave-One-Out cross-validation
- LpO CV : Leave-p-out cross-validation
- LSA/LSI: Latent Semantic Allocation/Indexing
- LSTM: Long Short Term Memory
- MAPE: Mean Absolute Percentage Error
- MCMC : Markov Chain Monte Carlo
- MDS : Multi-Dimensional Scaling
- MSE: Mean Squared Error
- NLDR: Non-Linear Dimensionality Reduction
- NLP : Natural Language Processing
- NMF: Non-Negative Matrix Factorization
- OOF: Out Of Fold
- PCA: Principal Component Analysis
- pLSA: Probabilistic Latent Semantic Allocation
- R2 : R-squared
- RF: Random Forest
- RFE: Recursive Feature Elimination
- RMSLE : Root Mean Squared Logarithmic Error
- RNN: Recurrent Neural Network
- ROC : Receiver Operating Characteristic
- SMOTE: Synthetic Minority Over-sampling Technique
- SVM: Support Vector Machine
- tf-idf: term frequency, inverse document frequency
- t-SNE: t-Distributed Stochastic Neighbor Embedding
- LB stands for LeaderBoard;
- CV stands for Cross Validation https://en.wikipedia.org/wiki/Cross-validation_(statistics);
- DNN stands for Deep Neural Network;
- CNN stands for Convolutional Neural Network;
- RNN stands for Recurrent Neural Network;
- SVM stands for Support Vector Machine.
- SMOTE: Synthetic Minority Over-sampling Technique
- LSA/LSI: Latent Semantic Allocation/Indexing
- pLSA: Probabilistic Latent Semantic Allocation
- NMF: Non-Negative Matrix Factorization
- kNN: k-Nearest Neighbors
- RFE: Recursive Feature Elimination
- RF: Random Forest
- ICA: Independent Component Analysis
- PCA: Principal Component Analysis
-
LOOV : Leave-One-Out cross-validation
-
LKOV : Leave-k-Out cross-validation
-
RMSLE : Root Mean Squared Logarithmic Error
-
R2 : R-squared (regression metrics)
-
ROC : Receiver Operating Characteristic
-
AUC : Area Under the Curve (ROC curve)
-
MDS : Multidimensional Scaling
-
LLE : Locally Linear Embedding
-
HMM : Hidden Marcov Model
-
MCMC : Markov chain Monte Carlo
-
ANOVA : Analysis of Variance
-
NLP : Natural Language Processing
原文:https://www.kaggle.com/getting-started/38187
- 登录 发表评论