【LLM】2023年大型语言模型培训
2022年底,大型语言模型(LLM)在互联网上掀起了风暴,OpenAI的ChatGPT在推出5天后就达到了100万用户。ChatGPT的功能和广泛的应用程序可以被认可为GPT-3语言模型所具有的1750亿个参数
尽管使用像ChatGPT这样的最终产品语言模型很容易,但开发一个大型语言模型需要大量的计算机科学知识、时间和资源。我们撰写这篇文章是为了让商业领袖了解:
- 大型语言模型的定义
- 大型语言模型示例
- 大型语言模型的体系结构
- 大型语言模型的训练过程,
这样他们就可以有效地利用人工智能和机器学习。
什么是大型语言模型?
大型语言模型是一种机器学习模型,它在大型文本数据语料库上进行训练,以生成各种自然语言处理(NLP)任务的输出,如文本生成、问答和机器翻译
大型语言模型通常基于深度学习神经网络,如Transformer架构,并在大量文本数据上进行训练,通常涉及数十亿个单词。较大的模型,如谷歌的BERT模型,使用来自各种数据源的大型数据集进行训练,这使它们能够为许多任务生成输出。
如果您是大型语言模型的新手,请查看我们的“大型语言模型:2023年完整指南”文章。
【NLP】2023年改变人工智能的前六大NLP语言模型
【LLM】大型语言模型综述论文
今天我将与大家分享一篇精彩的论文。这项调查提供了LLM文献的最新综述,这对研究人员和工程师来说都是一个有用的资源。
为什么选择LLM?
当参数尺度超过一定水平时,这些扩展的语言模型不仅实现了显著的性能改进,而且还表现出一些小规模语言模型(如BERT)所不具备的特殊能力(如上下文学习)。
为了区分参数尺度的差异,研究界为显著大小的PLM(例如,包含数百亿或数千亿个参数)创造了“大型语言模型”(LLM)一词。
特别是,这里的研究人员关注LLM的四个主要方面,即预训练、适应调整、利用和能力评估。此外,他们还总结了开发LLM的可用资源,并讨论了未来方向的剩余问题。
近年来现有大型语言模型(大小大于10B)的时间表。他们用黄色标记开源LLM。
【LLM】大型语言模型综述
【LLM】Free Dolly:推出世界上第一个真正开放的指令调谐LLM
两周前,我们发布了Dolly,这是一个大型语言模型(LLM),经过不到30美元的训练,可以展示类似ChatGPT的人机交互(又称指令跟随)。今天,我们将发布Dolly 2.0,这是第一个开源的指令遵循LLM,它对授权用于研究和商业用途的人工生成指令数据集进行了微调。
Dolly 2.0是一个基于EleutherAI pythia模型家族的12B参数语言模型,专门针对Databricks员工众包的新的、高质量的人工生成指令跟踪数据集进行了微调。
我们正在开源Dolly 2.0的全部内容,包括训练代码、数据集和模型权重,所有这些都适合商业使用。这意味着任何组织都可以创建、拥有和定制功能强大的LLM,这些LLM可以与人对话,而无需为API访问或与第三方共享数据付费。
在Jupyter笔记本中使用Python语言链在Mac上运行GPT4All
在过去的三周左右时间里,我一直在关注本地运行的大型语言模型(LLM)的疯狂开发速度,从llama.cpp开始,然后是alpaca,最近是(?!)gpt4all。
在那段时间里,我的笔记本电脑(2015年年中的Macbook Pro,16GB)在修理厂里呆了一个多星期,直到现在我才真正有了一个快速的游戏机会,尽管我10天前就知道我想尝试什么样的东西,而这在过去几天才真正成为可能。
根据这个要点,以下脚本可以作为Jupyter笔记本下载 this gist.
【langchain】在单个文档知识源的上下文中使用langchain对GPT4All运行查询
In the previous post, Running GPT4All On a Mac Using Python langchain in a Jupyter Notebook, 我发布了一个简单的演练,让GPT4All使用langchain在2015年年中的16GB Macbook Pro上本地运行。在这篇文章中,我将提供一个简单的食谱,展示我们如何运行一个查询,该查询通过从单个基于文档的已知源检索的上下文进行扩展。
I’ve updated the previously shared notebook here to include the following…
基于文档的知识源支持的示例查询
使用langchain文档中的示例进行示例文档查询。
【ChatGPT】提示设计的艺术:使用清晰的语法
探索清晰的语法如何使您能够将意图传达给语言模型,并帮助确保输出易于解析
这是与Marco Tulio Ribeiro共同撰写的关于如何使用指导来控制大型语言模型(LLM)的系列文章的第一部分。我们将从基础知识开始,逐步深入到更高级的主题。
在这篇文章中,我们将展示清楚的语法使您能够向LLM传达您的意图,并确保输出易于解析(如保证有效的JSON)。为了清晰和再现性,我们将从开源的StableLM模型开始,无需微调。然后,我们将展示相同的想法如何应用于像ChatGPT/GPT-4这样的微调模型。下面的所有代码都可以放在笔记本上,如果你愿意的话可以复制。
【LLM】LangChain 资料大全
【LLM】LangChian自动评估( Auto-Evaluator )机会
编者按:这是兰斯·马丁的一篇客座博客文章。
TL;DR
我们最近开源了一个自动评估工具,用于对LLM问答链进行评分。我们现在发布了一个开源、免费的托管应用程序和API,以扩展可用性。下面我们将讨论一些进一步改进的机会。
上下文
文档问答是一个流行的LLM用例。LangChain可以轻松地将LLM组件(例如,模型和检索器)组装成支持问答的链:输入文档被分割成块并存储在检索器中,在给定用户问题的情况下检索相关块并传递给LLM以合成答案。
问题
质量保证系统的质量可能有很大差异;我们已经看到由于特定的参数设置而产生幻觉和回答质量差的情况。但是,(1)评估答案质量和(2)使用此评估来指导改进的QA链设置(例如,块大小、检索到的文档数)或组件(例如,模型或检索器选择)并不总是显而易见的。