LLM护栏项目
https://github.com/NVIDIA/NeMo-Guardrails
NeMo Guardrails是一个开源工具包,用于轻松地将可编程护栏添加到基于LLM的会话系统中。
https://github.com/guardrails-ai/guardrails
为大型语言模型添加护栏。
https://github.com/truera/trulens
Evaluation and Tracking for LLM Experiments
- 阅读更多 关于 LLM护栏项目
- 登录 发表评论
评估大型语言模型(LLM):准确评估的标准度量集
Large Language Models (LLMs) are a type of artificial intelligence model that can generate human-like text. They are trained on large amounts of text data and can be used for a variety of natural language processing tasks, such as language translation, question answering, and text generation.
Evaluating LLMs is important to ensure that they are performing well and generating high-quality text. This is especially important for applications where the generated text is used to make decisions or provide information to users.
如何评估LLM:一个完整的度量框架
Over the past year, excitement around Large Language Models (LLMs) skyrocketed. With ChatGPT and BingChat, we saw LLMs approach human-level performance in everything from performance on standardized exams to generative art. However, many of these LLM-based features are new and have a lot of unknowns, hence require careful release to preserve privacy and social responsibility. While offline evaluation is suitable for early development of features, it cannot assess how model changes benefit or degrade the user experience in production.
基于语义搜索和LLM的问答模型有效性评价
The question answering system, that is based on semantic search and LLM currently one of the most popular application of LLM functionality. But what after we build it? How to evaluate the work of QnA system?
LLM评估指标:LLM评估所需的一切
Although evaluating the outputs of Large Language Models (LLMs) is essential for anyone looking to ship robust LLM applications, LLM evaluation remains a challenging task for many. Whether you are refining a model’s accuracy through fine-tuning or enhancing a Retrieval-Augmented Generation (RAG) system’s contextual relevancy, understanding how to develop and decide on the appropriate set of LLM evaluation metrics for your use case is imperative to building a bulletproof LLM evaluation pipeline.