跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(75) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) ChatGPT(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) RAG(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) 智能体(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) kafka(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 大型语言模型(2) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

category

Before diving into InfluxDB, it’s good to get acquainted with some key concepts of the database. This document introduces key InfluxDB concepts and elements. To introduce the key concepts, we’ll cover how the following elements work together in InfluxDB:

Sample data

The next section references the data printed out below. The data is fictional, but represents a believable setup in InfluxDB. They show the number of butterflies and honeybees counted by two scientists (langstroth and perpetua) in two locations (location 1 and location 2) over the time period from August 18, 2015 at midnight through August 18, 2015 at 6:12 AM. Assume that the data lives in a database called my_database and are subject to the autogen retention policy (more on databases and retention policies to come).

Hint: Hover over the links for tooltips to get acquainted with InfluxDB terminology and the layout.

name: 

census

time butterflies honeybees location scientist
2015-08-18T00:00:00Z 12 23 1 langstroth
2015-08-18T00:00:00Z 1 30 1 perpetua
2015-08-18T00:06:00Z 11 28 1 langstroth
2015-08-18T00:06:00Z 3 28 1 perpetua
2015-08-18T05:54:00Z 2 11 2 langstroth
2015-08-18T06:00:00Z 1 10 2 langstroth
2015-08-18T06:06:00Z 8 23 2 perpetua
2015-08-18T06:12:00Z 7 22 2 perpetua

Discussion

Now that you’ve seen some sample data in InfluxDB this section covers what it all means.

InfluxDB is a time series database so it makes sense to start with what is at the root of everything we do: time. In the data above there’s a column called time - all data in InfluxDB have that column. time stores timestamps, and the timestamp shows the date and time, in RFC3339 UTC, associated with particular data.

The next two columns, called butterflies and honeybees, are fields. Fields are made up of field keys and field values. Field keys (butterflies and honeybees) are strings; the field key butterflies tells us that the field values 12-7 refer to butterflies and the field key honeybees tells us that the field values 23-22 refer to, well, honeybees.

Field values are your data; they can be strings, floats, integers, or Booleans, and, because InfluxDB is a time series database, a field value is always associated with a timestamp. The field values in the sample data are:

12   23
1    30
11   28
3    28
2    11
1    10
8    23
7    22

In the data above, the collection of field-key and field-value pairs make up a field set. Here are all eight field sets in the sample data:

  • butterflies = 12 honeybees = 23
  • butterflies = 1 honeybees = 30
  • butterflies = 11 honeybees = 28
  • butterflies = 3 honeybees = 28
  • butterflies = 2 honeybees = 11
  • butterflies = 1 honeybees = 10
  • butterflies = 8 honeybees = 23
  • butterflies = 7 honeybees = 22

Fields are a required piece of the InfluxDB data structure - you cannot have data in InfluxDB without fields. It’s also important to note that fields are not indexed. Queries that use field values as filters must scan all values that match the other conditions in the query. As a result, those queries are not performant relative to queries on tags (more on tags below). In general, fields should not contain commonly queried metadata.

The last two columns in the sample data, called location and scientist, are tags. Tags are made up of tag keys and tag values. Both tag keys and tag values are stored as strings and record metadata. The tag keys in the sample data are location and scientist. The tag key location has two tag values: 1 and 2. The tag key scientist also has two tag values: langstroth and perpetua.

In the data above, the tag set is the different combinations of all the tag key-value pairs. The four tag sets in the sample data are:

  • location = 1scientist = langstroth
  • location = 2scientist = langstroth
  • location = 1scientist = perpetua
  • location = 2scientist = perpetua

Tags are optional. You don’t need to have tags in your data structure, but it’s generally a good idea to make use of them because, unlike fields, tags are indexed. This means that queries on tags are faster and that tags are ideal for storing commonly queried metadata.

Avoid using the following reserved keys:

  • _field
  • _measurement
  • time

If reserved keys are included as a tag or field key, the associated point is discarded.

Why indexing matters: The schema case study

Say you notice that most of your queries focus on the values of the field keys honeybees and butterflies:

SELECT * FROM "census" WHERE "butterflies" = 1
SELECT * FROM "census" WHERE "honeybees" = 23

Because fields aren’t indexed, InfluxDB scans every value of butterflies in the first query and every value of honeybees in the second query before it provides a response. That behavior can hurt query response times - especially on a much larger scale. To optimize your queries, it may be beneficial to rearrange your schema such that the fields (butterflies and honeybees) become the tags and the tags (location and scientist) become the fields:

name: 

census

time location scientist butterflies honeybees
2015-08-18T00:00:00Z 1 langstroth 12 23
2015-08-18T00:00:00Z 1 perpetua 1 30
2015-08-18T00:06:00Z 1 langstroth 11 28
2015-08-18T00:06:00Z 1 perpetua 3 28
2015-08-18T05:54:00Z 2 langstroth 2 11
2015-08-18T06:00:00Z 2 langstroth 1 10
2015-08-18T06:06:00Z 2 perpetua 8 23
2015-08-18T06:12:00Z 2 perpetua 7 22

Now that butterflies and honeybees are tags, InfluxDB won’t have to scan every one of their values when it performs the queries above - this means that your queries are even faster.

The measurement acts as a container for tags, fields, and the time column, and the measurement name is the description of the data that are stored in the associated fields. Measurement names are strings, and, for any SQL users out there, a measurement is conceptually similar to a table. The only measurement in the sample data is census. The name census tells us that the field values record the number of butterflies and honeybees - not their size, direction, or some sort of happiness index.

A single measurement can belong to different retention policies. A retention policy describes how long InfluxDB keeps data (DURATION) and how many copies of this data is stored in the cluster (REPLICATION). If you’re interested in reading more about retention policies, check out Database Management.

Replication factors do not serve a purpose with single node instances.

In the sample data, everything in the census measurement belongs to the autogen retention policy. InfluxDB automatically creates that retention policy; it has an infinite duration and a replication factor set to one.

Now that you’re familiar with measurements, tag sets, and retention policies, let’s discuss series. In InfluxDB, a series is a collection of points that share a measurement, tag set, and field key. The data above consist of eight series:

Series number Measurement Tag set Field key
series 1 census location = 1,scientist = langstroth butterflies
series 2 census location = 2,scientist = langstroth butterflies
series 3 census location = 1,scientist = perpetua butterflies
series 4 census location = 2,scientist = perpetua butterflies
series 5 census location = 1,scientist = langstroth honeybees
series 6 census location = 2,scientist = langstroth honeybees
series 7 census location = 1,scientist = perpetua honeybees
series 8 census location = 2,scientist = perpetua honeybees

Understanding the concept of a series is essential when designing your schema and when working with your data in InfluxDB.

point represents a single data record that has four components: a measurement, tag set, field set, and a timestamp. A point is uniquely identified by its series and timestamp.

For example, here’s a single point:

name: census
-----------------
time                    butterflies honeybees   location    scientist
2015-08-18T00:00:00Z    1           30          1           perpetua

The point in this example is part of series 3 and 7 and defined by the measurement (census), the tag set (location = 1scientist = perpetua), the field set (butterflies = 1honeybees = 30), and the timestamp 2015-08-18T00:00:00Z.

All of the stuff we’ve just covered is stored in a database - the sample data are in the database my_database. An InfluxDB database is similar to traditional relational databases and serves as a logical container for users, retention policies, continuous queries, and, of course, your time series data. See Authentication and Authorization and Continuous Queries for more on those topics.

Databases can have several users, continuous queries, retention policies, and measurements. InfluxDB is a schemaless database which means it’s easy to add new measurements, tags, and fields at any time. It’s designed to make working with time series data awesome.