跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 智能体(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

category

Introduction

While exploring the field of artificial intelligence, we often need to leverage existing APIs to implement specific functionalities. Recently, while exploring the Langchain library, I discovered an interesting feature: using OpenAI’s function call API to perform specific operations in a chain. This not only demonstrates how to obtain structured outputs from ChatOpenAI but also how to create and execute function chains. This feature offers us a new possibility, enabling the execution of multiple functions within a chain. Through this approach, we can obtain structured outputs based on specific inputs, thus providing more accurate data for subsequent operations.

LangChain OpenAI Functions

Firstly, we need to understand how to obtain structured outputs from ChatOpenAI. In the Langchain library, there’s a create_structured_output_chain function that can accept either a Pydantic class or JsonSchema for structured output formatting. This way, we can force the model to return outputs in a specific structure, facilitating subsequent processing.

For instance, we can create a Person class to describe basic information about an individual:

from langchain.pydantic_v1 import BaseModel, Field   
​
class Person(BaseModel):  
    """Identifying information about a person."""  
​
    name: str = Field(..., description="The person's name")  
    age: int = Field(..., description="The person's age")  
    fav_food: Optional[str] = Field(None, description="The person's favorite food")

Then, we can create a chain to process specific inputs and attempt to extract structured information from them. For example, we can create the following chain to process the input “Sally is 13”:

llm = ChatOpenAI(model="gpt-4", temperature=0)  
prompt = ChatPromptTemplate.from_messages(  
    [  
        ("system", "You are a world class algorithm for extracting information in structured formats."),  
        ("human", "Use the given format to extract information from the following input: {input}"),  
        ("human", "Tip: Make sure to answer in the correct format"),  
    ]  
)  
​
chain = create_structured_output_chain(Person, llm, prompt, verbose=True)  
chain.run("Sally is 13")

The result is as follows:

Person(name='Sally', age=13, fav_food='Unknown')

In this way, we successfully extracted structured information from the text. Similarly, we can process more complex inputs, like texts containing information about multiple individuals. Additionally, we can use JsonSchema to specify the desired structure instead of a Pydantic class.

Note, in the above example, the description of classes and fields is crucial as it dictates the output content by the large model.

Implementing Text Translation

In the Langchain library, the create_structured_output_chain function provides us with a concise way to handle specific tasks and obtain structured outputs. For instance, we can leverage this feature to implement text translation. Firstly, we need to define a Pydantic model to describe the output structure of the translation, as follows:

from langchain.pydantic_v1 import BaseModel, Field
​
class Translation(BaseModel):
    translation: str = Field(..., description="Translated text")

Next, we initialize the ChatOpenAI model and create a translation prompt template:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
​
llm = ChatOpenAI(model="gpt-4", temperature=0)
​
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a translation model capable of translating English text to Chinese."),
    ("human", "Translate the following text: {input}")
])

Lastly, we utilize the create_structured_output_chain function to create a function chain, and run the chain to translate a specified text:

from langchain.chains.openai_functions import create_structured_output_chain
​
chain = create_structured_output_chain(Translation, llm, prompt, verbose=True)
​
result = chain.run("Hello, how are you?")
​
print(result)

Thus, we obtained the translation result, while ensuring the output is structured, which can be beneficial for downstream operations.

Conclusion

Through the examples above, we can see that Langchain, via the create_structured_output_chain function, provides us with an effective way to achieve structured outputs for specific tasks. This approach not only simplifies the code but also significantly improves our efficiency in processing and extracting structured information. As AI technology continues to evolve, structured outputs will play a significant role in data processing, information extraction, and natural language processing, among other fields. I believe that this feature of Langchain will find wide application, providing more convenience for developers and researchers.