跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

In the previous post, Running GPT4All On a Mac Using Python langchain in a Jupyter Notebook, 我发布了一个简单的演练,让GPT4All使用langchain在2015年年中的16GB Macbook Pro上本地运行。在这篇文章中,我将提供一个简单的食谱,展示我们如何运行一个查询,该查询通过从单个基于文档的已知源检索的上下文进行扩展。

I’ve updated the previously shared notebook here to include the following…

基于文档的知识源支持的示例查询

使用langchain文档中的示例进行示例文档查询。

其想法是对文档源运行查询,以检索一些相关的上下文,并将其用作提示上下文的一部分。

#https://python.langchain.com/en/latest/use_cases/question_answering.html

template = """

Question: {question}

Answer: 

"""​
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=llm)

天真的提示给出了一个无关紧要的答案:

%%time
query = "What did the president say about Ketanji Brown Jackson"
llm_chain.run(question)
CPU times: user 58.3 s, sys: 3.59 s, total: 1min 1s
Wall time: 9.75 s
'\nAnswer: The Pittsburgh Steelers'

Now let’s try with a source document.

#!wget https://raw.githubusercontent.com/hwchase17/langchainjs/main/examples/state_of_the_union.txt
from langchain.document_loaders import TextLoader

# Ideally....
loader = TextLoader('./state_of_the_union.txt')

However, creating the embeddings is qute slow so I’m going to use a fragment of the text:

#ish via chatgpt...
def search_context(src, phrase, buffer=100):
  with open(src, 'r') as f:
    txt=f.read()
    words = txt.split()
    index = words.index(phrase)
    start_index = max(0, index - buffer)
    end_index = min(len(words), index + buffer+1)
    return ' '.join(words[start_index:end_index])

fragment = './fragment.txt'
with open(fragment, 'w') as fo:
    _txt = search_context('./state_of_the_union.txt', "Ketanji")
    fo.write(_txt)
!cat $fragment

Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. We can do both. At our border, we’ve installed new technology like cutting-edge
loader = TextLoader('./fragment.txt')

Generate an index from the knowledge source text:

#%pip install chromadb
from langchain.indexes import VectorstoreIndexCreator
%time
# Time: ~0.5s per token
# NOTE: "You must specify a persist_directory oncreation to persist the collection."
# TO DO: How do we load in an already generated and persisted index?
index = VectorstoreIndexCreator(embedding=llama_embeddings,
                                vectorstore_kwargs={"persist_directory": "db"}
                               ).from_loaders([loader])
Using embedded DuckDB with persistence: data will be stored in: db

CPU times: user 2 µs, sys: 2 µs, total: 4 µs
Wall time: 7.87 µs​
%time
pass

# The following errors...
#index.query(query, llm=llm)
# With the full SOTU text, I got:
# Error: llama_tokenize: too many tokens;
# Also occasionally getting:
# ValueError: Requested tokens exceed context window of 512

# If we do get passed that,
# NotEnoughElementsException

# For the latter, somehow need to set something like search_kwargs={"k": 1}

It seems the retriever is expecting, by default, 4 results documents. I can’t see how to pass in a lower limit (a single response document is acceptable in this case), so we nd to roll our own chain…​

%%time

# Roll our own....

#https://github.com/hwchase17/langchain/issues/2255
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA

documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

# Again, we should persist the db and figure out how to reuse it
docsearch = Chroma.from_documents(texts, llama_embeddings)
Using embedded DuckDB without persistence: data will be transient

CPU times: user 5min 59s, sys: 1.62 s, total: 6min 1s
Wall time: 49.2 s
%%time

# Just getting a single result document from the knowledge lookup is fine...
MIN_DOCS = 1

qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff",
                                 retriever=docsearch.as_retriever(search_kwargs={"k": MIN_DOCS}))
CPU times: user 861 µs, sys: 2.97 ms, total: 3.83 ms
Wall time: 7.09 ms

How about running our query now in the context of the knowledge source?

%%time

print(query)

qa.run(query)
What did the president say about Ketanji Brown Jackson
CPU times: user 7min 39s, sys: 2.59 s, total: 7min 42s
Wall time: 1min 6s

' The president honored Justice Stephen Breyer and acknowledged his service to this country before introducing Justice Ketanji Brown Jackson, who will be serving as the newest judge on the United States Court of Appeals for the District of Columbia Circuit.'

How about a more precise query?

%%time
query = "Identify three things the president said about Ketanji Brown Jackson"

qa.run(query)
CPU times: user 10min 20s, sys: 4.2 s, total: 10min 24s
Wall time: 1min 35s

' The president said that she was nominated by Barack Obama to become the first African American woman to sit on the United States Court of Appeals for the District of Columbia Circuit. He also mentioned that she was an Army veteran, a Constitutional scholar, and is retiring Justice of the United States Supreme Court.'

Hmm… are we in a conversation and picking up on previous outputs? In previous attempts I did appear to be getting quite relevant answers… Are we perhaps getting more than a couple of results docs and picking the less good one? Or is the model hit and miss on what it retrieves? Can we view the sample results docs from the knoweldge lookup to help get a feel for what’s going on?

Let’s see if we can format the response…

%%time

query = """
Identify three things the president said about Ketanji Brown Jackson. Provide the answer in the form: 

- ITEM 1
- ITEM 2
- ITEM 3
"""

qa.run(query)
CPU times: user 12min 31s, sys: 4.24 s, total: 12min 35s
Wall time: 1min 45s

"\n\nITEM 1: President Trump honored Justice Breyer for his service to this country, but did not specifically mention Ketanji Brown Jackson.\n\nITEM 2: The president did not identify any specific characteristics about Justice Breyer that would be useful in identifying her.\n\nITEM 3: The president did not make any reference to Justice Breyer's current or past judicial rulings or cases during his speech."