跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) LLM(84) angular(83) 大语言模型(67) 人工智能(56) 前端开发(50) LangChain(43) golang(43) 机器学习(40) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) 深度学习(20) Web技术(19) 精选资源(19) Java(19) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) LLMOps(11) 聊天机器人(11) 安卓(11) ChatGPT(10) typescript(10) 资料精选(10) mlops(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) RAG(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) 安全(9) 智能体(8) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 数据科学(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) whisper(6) Prisma(6) 隐私保护(6) 提示工程(6) Agent(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 生成式AI(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) 数据分析(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) LLM Agent(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) Machine Learning(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【机器学习】应用机器学习很难

应用机器学习很难。许多组织尚未从机器学习中受益,大多数团队仍然发现有效应用它很棘手。
尽管有很多机器学习课程,但大多数都侧重于理论,学生在完成学习时不知道如何应用机器学习。实践知识是通过实践经验获得的,很少有记录——很难在教科书、课堂或教程中找到。了解机器学习与在工作中应用机器学习之间存在差距。
为了填补这一空白,ApplingML通过精心策划的论文/博客、指南和对ML从业者的采访收集了关于应用ML的隐性/部落/幽灵知识。简而言之,这是1/3的应用ml、1/3的鬼知识和1/3的Tim Ferriss Show。其目的是使在工作中更容易应用机器学习并从中受益。

【AI模型】从零开始构建Transformers

我拖延了几年才深入研究Transformers 。最后,不知道是什么让它们滴答作响的不适感对我来说太大了。
2017年的这篇论文中引入了转换器作为序列转导的工具——将一个符号序列转换为另一个。最常见的例子是翻译,比如从英语翻译成德语。它也被修改为执行序列完成——给出一个开始提示,以相同的方式进行。它们已迅速成为自然语言处理研究和产品开发中不可或缺的工具。
在我们开始之前,先提醒一下。我们将深入探讨矩阵乘法,并探讨反向传播(用于训练模型的算法),但您无需事先了解任何相关内容。我们将逐一添加所需的概念,并附上解释。
这不是一次短途旅行,但我希望你会很高兴你来了。

【技术趋势】oreilly值得关注雷达趋势:2025年2月

上个月,DeepSeek发布了其R1推理模型(现在显然改名为DeepThink),其功能类似于OpenAI的o1。DeepSeek的重要性不在于其基准测试结果;因为有很多模型的表现与o1相当。真正重要的是,它似乎只用了可比模型十分之一的资源进行训练。把更多硬件投入问题中,通常不是获得良好结果的最佳方式。

人工智能

【企业AI战略】扩展AI:AI稳定型与AI加速型组织的战略

新的GenAI基础模型每两天半发布一次,但几乎一半的CIO表示,AI未能达到预期的投资回报率(ROI)。

通过确定组织的AI进展速度并采取正确的下一步行动来应对这一矛盾
 

扩展人工智能需要对组织进行盘点


人工智能已经取得了长足的进步,每两天半就会发布一次新的GenAI基础模型。尽管创新速度很快,但近一半的首席信息官表示,人工智能没有达到投资回报率的预期。这种二分法给组织带来了一个独特的挑战:在人工智能的炒作和潜力与实现切实成果的现实之间取得平衡。74%的首席执行官认为人工智能将在2024年对其行业产生重大影响,高于2023年的59%,这一事实突显了这种紧迫性。不用说,理解和实施人工智能战略比以往任何时候都更加重要。
本文来源于Gartner IT Symposium/Xpo 2024的主题演讲,强调了人工智能领域的双重性质。随着人工智能技术的快速发展,对扩展人工智能感兴趣的组织必须根据自己的速度和野心决定是采用人工智能稳定还是人工智能加速的方法。

为了扩大AI规模并推动AI的采用,首先要明确你的AI目标。


尽管你的组织可能只是在进行其中的第二场比赛,但了解这两者都非常重要。