跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) angular(82) LLM(78) 大语言模型(63) 人工智能(53) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(33) Go基础(29) Python(24) Vue(22) Web开发(20) Web技术(19) 精选资源(19) 深度学习(19) Java(18) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) 安卓(11) 聊天机器人(10) typescript(10) 资料精选(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) ChatGPT(9) LLMOps(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) mlops(9) 安全(9) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 软件架构(7) RAG(7) Go语言高级开发(7) AWS(7) C++(7) 数据科学(7) 智能体(6) whisper(6) Prisma(6) 隐私保护(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 提示工程(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) nextjs(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) RAG架构(3) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) 语言模型(2) 可穿戴设备(2) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) 数据分析(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

A curated list of Meta Learning papers, code, books, blogs, videos, datasets and other resources.

Table of Contents

Check out my Deep Reinforcement Learning Repo here.

Papers and Code

A curated set of papers along with code.

Zero-Shot / One-Shot / Few-Shot / Low-Shot Learning

  • Siamese Neural Networks for One-shot Image Recognition, (2015), Gregory Koch, Richard Zemel, Ruslan Salakhutdinov[pdf] [code]

  • Prototypical Networks for Few-shot Learning, (2017), Jake Snell, Kevin Swersky, Richard S. Zemel[pdf] [code]

  • Gaussian Prototypical Networks for Few-Shot Learning on Omniglot (2017), Stanislav Fort[pdf] [code]

  • Matching Networks for One Shot Learning, (2017), Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra[pdf] [code]

  • Learning to Compare: Relation Network for Few-Shot Learning, (2017), Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, Timothy M. Hospedales[pdf] [code]

  • One-shot Learning with Memory-Augmented Neural Networks, (2016), Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap[pdf] [code]

  • Optimization as a Model for Few-Shot Learning, (2016), Sachin Ravi and Hugo Larochelle[pdf] [code]

  • An embarrassingly simple approach to zero-shot learning, (2015), B Romera-Paredes, Philip H. S. Torr[pdf] [code]

  • Low-shot Learning by Shrinking and Hallucinating Features, (2017), Bharath Hariharan, Ross Girshick[pdf] [code]

  • Low-shot learning with large-scale diffusion, (2018), Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou[pdf] [code]

  • Low-Shot Learning with Imprinted Weights, (2018), Hang Qi, Matthew Brown, David G. Lowe[pdf] [code]

  • One-Shot Video Object Segmentation, (2017), S. Caelles and K.K. Maninis and J. Pont-Tuset and L. Leal-Taixe' and D. Cremers and L. Van Gool[pdf] [code]

  • One-Shot Learning for Semantic Segmentation, (2017), Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, Byron Boots[pdf] [code]

  • Few-Shot Segmentation Propagation with Guided Networks, (2018), Kate Rakelly, Evan Shelhamer, Trevor Darrell, Alexei A. Efros, Sergey Levine[pdf] [code]

  • Few-Shot Semantic Segmentation with Prototype Learning, (2018), Nanqing Dong and Eric P. Xing[pdf]

  • Dynamic Few-Shot Visual Learning without Forgetting, (2018), Spyros Gidaris, Nikos Komodakis[pdf] [code]

  • Feature Generating Networks for Zero-Shot Learning, (2017), Yongqin Xian, Tobias Lorenz, Bernt Schiele, Zeynep Akata[pdf]

  • Meta-Learning Deep Visual Words for Fast Video Object Segmentation, (2019), Harkirat Singh Behl, Mohammad Najafi, Anurag Arnab, Philip H.S. Torr[pdf]

Model Agnostic Meta Learning

  • Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, (2017), Chelsea Finn, Pieter Abbeel, Sergey Levine[pdf] [code]

  • Adversarial Meta-Learning, (2018), Chengxiang Yin, Jian Tang, Zhiyuan Xu, Yanzhi Wang[pdf] [code]

  • On First-Order Meta-Learning Algorithms, (2018), Alex Nichol, Joshua Achiam, John Schulman[pdf] [code]

  • Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, (2017), Zhenguo Li, Fengwei Zhou, Fei Chen, Hang Li[pdf] [code]

  • Gradient Agreement as an Optimization Objective for Meta-Learning, (2018), Amir Erfan Eshratifar, David Eigen, Massoud Pedram[pdf] [code]

  • Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace, (2018), Yoonho Lee, Seungjin Choi[pdf] [code]

  • A Simple Neural Attentive Meta-Learner, (2018), Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel[pdf] [code]

  • Personalizing Dialogue Agents via Meta-Learning, (2019), Zhaojiang Lin, Andrea Madotto, Chien-Sheng Wu, Pascale Fung[pdf] [code]

  • How to train your MAML, (2019), Antreas Antoniou, Harrison Edwards, Amos Storkey[pdf] [code]

  • Learning to learn by gradient descent by gradient descent, (206), Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas[pdf] [code]

  • Unsupervised Learning via Meta-Learning, (2019), Kyle Hsu, Sergey Levine, Chelsea Finn[pdf] [code]

  • Few-Shot Image Recognition by Predicting Parameters from Activations, (2018), Siyuan Qiao, Chenxi Liu, Wei Shen, Alan Yuille[pdf] [code]

  • One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning, (2018), Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Pieter Abbeel, Sergey Levine[pdf] [code]

  • MetaGAN: An Adversarial Approach to Few-Shot Learning, (2018), ZHANG, Ruixiang and Che, Tong and Ghahramani, Zoubin and Bengio, Yoshua and Song, Yangqiu[pdf]

  • Fast Parameter Adaptation for Few-shot Image Captioning and Visual Question Answering,(2018), Xuanyi Dong, Linchao Zhu, De Zhang, Yi Yang, Fei Wu[pdf]

  • CAML: Fast Context Adaptation via Meta-Learning, (2019), Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson[pdf]

  • Meta-Learning for Low-resource Natural Language Generation in Task-oriented Dialogue Systems, (2019), Fei Mi, Minlie Huang, Jiyong Zhang, Boi Faltings[pdf]

  • MIND: Model Independent Neural Decoder, (2019), Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan[pdf]

  • Toward Multimodal Model-Agnostic Meta-Learning, (2018), Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim[pdf]

  • Alpha MAML: Adaptive Model-Agnostic Meta-Learning, (2019), Harkirat Singh Behl, Atılım Güneş Baydin, Philip H. S. Torr. [pdf]

  • Online Meta-Learning, (2019), Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine[pdf]

Meta Reinforcement Learning

  • Generalizing Skills with Semi-Supervised Reinforcement Learning, (2017), Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine[pdf] [code]

  • Guided Meta-Policy Search, (2019), Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn[pdf] [code]

  • End-to-End Robotic Reinforcement Learning without Reward Engineering, (2019), Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, Sergey Levine[pdf] [code]

  • Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables, (2019), Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, Sergey Levine[pdf] [code]

  • Meta-Gradient Reinforcement Learning, (2018), Zhongwen Xu, Hado van Hasselt,David Silver[pdf]

  • Task-Agnostic Dynamics Priors for Deep Reinforcement Learning, (2019), Yilun Du, Karthik Narasimhan[pdf]

  • Meta Reinforcement Learning with Task Embedding and Shared Policy,(2019), Lin Lan, Zhenguo Li, Xiaohong Guan, Pinghui Wang[pdf]

  • NoRML: No-Reward Meta Learning, (2019), Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, Chelsea Finn[pdf]

  • Actor-Critic Algorithms for Constrained Multi-agent Reinforcement Learning, (2019), Raghuram Bharadwaj Diddigi, Sai Koti Reddy Danda, Prabuchandran K. J., Shalabh Bhatnagar[pdf]

  • Adaptive Guidance and Integrated Navigation with Reinforcement Meta-Learning, (2019), Brian Gaudet, Richard Linares, Roberto Furfaro[pdf]

  • Watch, Try, Learn: Meta-Learning from Demonstrations and Reward, (2019), Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn[pdf]

  • Options as responses: Grounding behavioural hierarchies in multi-agent RL, (2019), Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, Joel Z. Leibo[pdf]

  • Learning latent state representation for speeding up exploration, (2019), Giulia Vezzani, Abhishek Gupta, Lorenzo Natale, Pieter Abbeel[pdf]

  • Beyond Exponentially Discounted Sum: Automatic Learning of Return Function, (2019), Yufei Wang, Qiwei Ye, Tie-Yan Liu[pdf]

  • Learning Efficient and Effective Exploration Policies with Counterfactual Meta Policy, (2019), Ruihan Yang, Qiwei Ye, Tie-Yan Liu[pdf]

  • Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning, (2019), Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Albrecht[pdf]

  • Learning to Discretize: Solving 1D Scalar Conservation Laws via Deep Reinforcement Learning, (2019), Yufei Wang, Ziju Shen, Zichao Long, Bin Dong[pdf]

Books

  • Hands-On Meta Learning with Python: Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow, (2019), Sudharsan Ravichandiran[pdf] [code]

Libraries

Blogs

Lecture Videos

Datasets

Most popularly used datasets:

Check several other datasets by Google here.

Workshops

Researchers

原文:https://github.com/sudharsan13296/Awesome-Meta-Learning