apaas.dev
31 May 2022
SEO Title
category
White Paper
Course and Slides
- Tsinghua-Peidan - AIOps course in Tsinghua.
- 基于机器学习的智能运维
Industry Practice
- 搭建大规模高性能的时间序列大数据平台
- Yahoo大规模时列数据异常检测技术及其高性能可伸缩架构
- Netflix: Robust PCA
- LinkedIn: exponential smoothing
- Uber: multivariate non-linear model
Article
- 智能运维|AIOps中的四大金刚都是谁?
- A Comparison of Mapping Approaches for Distributed Cloud Applications
- AIOps探索:基于VAE模型的周期性KPI异常检测方法
Tools and Algorithms
- Tools to Monitor and Visualize Microservices Architecture
- python-fp-growth,挖掘频繁项集
- Anomaly Detection with Twitter in R
- 百度开源时间序列打标工具:Curve
- Microsoft开源时间序列打标工具: TagAnomaly
- Anomaly Detection Examples
- facebook/prophet, Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
- google/CausalImpact, An R package for causal inference in time series
- 时间序列分析之ARIMA
- 时间序列特征提取库tsfresh
- Yahoo EGADS : A Java package to automatically detect anomalies in large scale time-series data
- Awesome Time Series Analysis and Data Mining
Paper
- Survey on Models and Techniques for Root-Cause Analysis
- 基于机器学习的智能运维
- HotSpot: Anomaly Localization for Additive KPIs With Multi-Dimensional Attributes
- Chinese:清华AIOps新作:蒙特卡洛树搜索定位多维指标异常
- Opprentice: Towards Practical and Automatic Anomaly Detection Through Machine Learning
- Robust and Rapid Clustering of KPIs for Large-Scale Anomaly Detection
- KPI-TSAD: A Time-Series Anomaly Detector for KPI Monitoring in Cloud Applications
- Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network
- Generic and Robust Localization of Multi-Dimensional Root Causes
- Papers from Tsinghua NetMan Lab
Dataset
- Alibaba/clusterdata
- Azure/AzurePublicDataset
- Google/cluster-data
- The Numenta Anomaly Benchmark(NAB)
- Yahoo: A Labeled Anomaly Detection Dataset
- 港中文loghub数据集
- 2018 AIOPS挑战赛预赛测试集 2018 AIOPS挑战赛预赛训练集
Useful WeChat Official Accounts
- 腾讯织云(腾讯的)
- 智能运维前沿(清华裴丹团队的)
- AIOps智能运维(百度的)
- 华为产品可服务能力(华为的)
原文:https://github.com/linjinjin123/awesome-AIOps
- 登录 发表评论